Department of Clinical Sciences

Temple Clinical Research Institute

Temple Clinical Research Institute

The *Right* Study Design to Answer the Right Research Question

Susan G. Fisher, M.S., Ph.D. Chair, Department of Clinical Sciences

Asking the Right Question

A Well-built Research Question should:

- Be specific with no ambiguity about
 - -population,
 - -subjects,
 - -variables
- Be stated in writing at the outset of the study

School of Medicine

• Direct the study design

Asking the Right Question A Good Research Question is:

School of Medicine

- Feasible
- Ethical
- Relevant and interesting
- Novel...maybe!

C School of Medicine TEMPLE UNIVERSITY®

Case Report / Case Series

- Anecdotal Reports of Interesting Observations
 - Unusual cluster of symptoms
 - Departure from a normal pattern of known disease
 - Repetitive disease occurrence among people with a specific exposure
- Cluster of observations in short time period or small geographic area
 - New epidemic of known disease
 - New disease occurrence
 - New cause of existing disease

Ecologic Studies

- Evaluation of associations between exposures and outcomes in populations rather than individuals
- Ecological Fallacy

-results from making causal inferences about individual phenomena based on observations of group

School of Medicine

Cross-Sectional Studies

 Provide "snapshots" of the health of a specified population at one moment in time.

School of Medic®ne

- Usually descriptive in nature
- Often used to determine 'prevalence' of a condition or correlation between 2 variables
- Temporality cannot be determined \rightarrow 'chicken or egg problem'
- Low cost and no loss to follow-up

Analytic (Observational) Studies

- Case Control study
- Cohort Study

Case Control Study

- Select subjects with outcome/disease of interest (Cases)
- Select similar group of individuals without disease/outcome of interest (Controls)
- Determine exposure status of all subjects

_	Cases (With Disease)	Controls (Without Disease)
Exposed	а	b
Not exposed	С	d
Total	a + c	b + d

Case Control Study Advantages

- Quick and easy
- Able to study multiple risk factors simultaneously
- Efficient for rare diseases
- Requires 'small-ish' sample sizes

Case Control Study Disadvantages

- Cannot address causality
- Cases may reflect survival benefit
- Only investigates 1 disease outcome
- Can only compare odds of exposure; not incidence of outcome
- High, **HIGH** likelihood of bias

Control Sources

- General population controls
- Hospitalized individuals
- Neighborhood residents
- Spouses / relatives/ friends of case

School of Medicine

ODDS RATIOS

In a case control study, we use the **ODDS RATIO** to estimate the odds of a case being exposed versus the odds of a control being exposed.

ODDS RATIO (OR) = AD/BC

Interpreting an Odds Ratio

If OR = 1

 Odds of exposure is equal between groups (no association)

If OR > 1

 Odds of exposure is greater in cases than in controls (positive association);

If OR < 1

 Odds of exposure in cases is less than odds of exposure in controls (negative association; possibly protective)

Example of an Odds Ratio

History of Alcohol and Tobacco Exposure Among Males with Advanced Laryngeal Cancer Before Diagnosis

	CASES	CONTROLS		
	Laryngeal Cancer	No Cancer Hx		
Heavy Alcohol & Tobacco Use	25	10		
One or None	50	80		
Total	75	90		
OR =	$= \frac{\mathrm{ad}}{\mathrm{bc}} = \frac{25 * 80}{50 * 10} = \frac{2000}{500} =$	=4.0		

School of Medicine TEMPLE UNIVERSITY®

Cohort Studies

- Designed to address a specific hypothesis;
- Select a group of subjects exposed to factor of interest (risk factor/treatment) and a group not exposed
- OR select a group of subjects and then categorize them by presence or absence of risk / exposure / treatment
- Collect additional data related to other factors that may confound (bias) the association
- Prospectively follow both the exposed and unexposed group to determine occurrence of outcome of interest

Cohort Studies

School of Medicine TEMPLE UNIVERSITY ®

Prospective & Retrospective Cohort Studies

Concurrent (Prospective) Cohort Study

- Exposure status collected in present time and subjects followed forward in time for outcome of interest;
- Disease has short induction and latency period

ool of Medicine

- Exposure is current or recent
- Want high-quality data

Non-concurrent (retrospective) Cohort Study

- Past exposure status established from previously collected data; subjects followed forward to present time or future to examine outcome
- Disease has long induction and latent period
- Historical exposure data available
- Desirable to save time and money

Calculation of Relative Risk in a Cohort Study

	Oute	come	Incidence		
	Yes	No			
Exposed	а	b	a/(a+b)		
Not exposed	С	d	c/(c+d)		

Relative Risk (RR) = incidence of disease in exposed divided by incidence of disease in the unexposed

RR = (a/a+b) / c/c+c)

T School of Medicine TEMPLE UNIVERSITY®

Interpreting the Relative Risk of a Disease

If RR = 1

• Risk in exposed equal to risk in unexposed (no association)

If RR > 1

 Risk in exposed greater than risk in unexposed (positive association);

If RR < 1

 Risk in exposed less than risk in unexposed (negative association; possibly protective)

Table 8–1. Design of a Cohort Study

		Then Follow to See Whether			Incidence	
		Disease Develops	Disease Does Not Develop	, Totals	Rates of Disease	
First select	Exposed	а	b	a + b	$\frac{a}{a+b}$	
	Not exposed	С	d	c + d	$\frac{c}{c+d}$	

Table 8-2. Results of a Hypothetical Cohort Study of Smoking and Coronary Heart Disease (CHD)

		Then Follow to See Whether			Incidence	
		Develop CHD	Do Not Develop CHD	Totals	per 1,000 per Year	
First select { S	moke cigarettes	84	2,916	3,000	28.0	
	o not smoke cigarettes	87	4,913	5,000	17.4	

Advantages of Cohort Studies

- Cases are incident cases and may be more representative of all cases of the disease
- Provides more information on the natural history of a disease
- Incidence rates are available
- Fewer sources of bias
- Temporal relationship between exposure and disease can be established
- Able to study a rare exposure and a common disease

Disadvantages of Cohort Studies

- Duration may be long with difficulty maintaining consistent study methods and staff
- Expensive
- Large population required
- Exposure may not have been measured at baseline or may change

nool of Medicine

• Rare diseases cannot be studied

When is a Prospective Study the RIGHT Design

- Good evidence of an association between an exposure and a disease exists;
- Attrition of study population can be minimized;
- Ample funds are available;
- The investigator has a long life-expectancy

pool of Medicine

REMEMBER....

Observational studies may be fraught with bias!

Proceed Cautiously

